NSM. État des connaissances relatif aux nanoparticules de dioxyde de titane et d'oxyde de zinc dans les produits cosmétiques en termes de pénétration cutanée, de génotoxicité et de cancérogenèse. Saisine 2008 BCT0001. 2011 (https://ansm.sante.fr/).
Kirk-Othmer - Encyclopedia of Chemical Technology, 5th ed. Vol. 25. New- York, John Wiley and sons ; 2004 : 12-47.
Titanium dioxide. Lewis RJ - Hawley's Condensed chemical dictionary, 14th ed. New York : John Wiley and Sons ; 2001 : 1104.
Honnert B, Vincent R - Production et utilisation industrielle des particules nanostructurées. Hygiène et sécurité du travail. Cahiers de notes documentaires, 2007, 209, ND 2277, pp. 5-21.
Ricaud M, Witschger O - Les nanomatériaux. Paris, INRS, ED 6050 (https://www.inrs.fr/)
Ricaud M et al. - Nanomatériaux : prévention des risques dans les laboratoires. Paris, INRS, ED 6115 (https://www.inrs.fr/).
IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans. Lyon, Centre international de recherche sur le cancer, 2010, vol. 93, pp. 193-276 (https://monographs.iarc.who.int/monographs-available/).
Titane (dioxyde de), en Ti. Aide-mémoire technique « Les valeurs limites d'exposition professionnelle aux agents chimiques en France ». Paris, INRS, ED 6443 (https://www.inrs.fr/).
Titanium dioxide. Guide to occupational exposure values. Cincinnati, ACGIH ; 2012, 240 p.
Le dioxyde de titane sous forme nanométrique (TiO2-NP, P25) – Avis de l’Anses, rapport d’expertise collective n°. 2019-SA-0109 "nTiO2 OEL", mai 2020 (https://www.anses.fr/fr).
Oyabu T, Myojo T, Lee BW, Okada T et al. - Biopersistence of NiO and TiO2 nanoparticles following intratracheal instillation and inhalation. Int J Mol Sci. 2017 ; 18(12) : 2757.
Bermudez E, Mangum JB, Wong BA, Asguarian B et al. - Pulmonary responses of mice, rats and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 2004 ; 77 : 347-357.
Relier C, Dubreuil M, Lozano Garcıa O, Cordelli E et al. - Study of TiO2 P25 nanoparticles genotoxicity on lung, blood, and liver cells in lung overload and non-overload conditions after repeated respiratory exposure in rats. Toxicol Sci. 2017 ; 156(2) : 527-537.
Kreyling WG, Holzwarth U , Schleh C, Hirn S et al. - Quantitative biokinetics over a 28 day period of freshly generated, pristine, 20 nm titanium dioxide nanoparticle aerosols in healthy adult rat after a single two-hour inhalation exposure. Part Fibre Toxicol. 2019 ; 16 : 29.
Kreyling WG, Holzwarth U, Haberl N, Kozempel J et al. - Quantitative biokinetics of titanium dioxide nanoparticles after intratracheal instillation in rats: Part 3. Nanotoxicology 2017c ; 11 : 454-464.
Nanoderm. Quality of skin as a barrier to ultra-fine particles. Final report. 2007 (project number : QLK4-CT-2002-02678) (https://www.uni-leipzig.de/en).
Dréno B, Alexis A, Chuberre B, Marinovich M. - Safety of titanium dioxide nanoparticles in cosmetics. J Eur Acad Dermatol Venereol. 2019 ; 33 Suppl 7 : 34-46.
SCCS (EC Scientific Committee on Consumer Safety). Opinion on Titanium Dioxide (nano form). COLIPA n° S75. SCCS/1516/13, Revision of 22 April 2014, 113pp.
SCCS (EC Scientific Committee on Consumer Safety). Opinion on Titanium Dioxide (nano form) as UV-Filter in sprays. SCCS/1583/17 Final, adopted on 19 January 2018, 52pp.
SCCS, Chaudhry Q - Opinion of the Scientific Committee on Consumer safety (SCCS) - Revision of the opinion on the safety of the use of titanium dioxide, nano form, in cosmetic products. Regul Toxicol Pharmacol. 2015 ; 73(2) : 669-670.
Sadrieh N, Wokovich AM, Gopee NV, Zheng J et al. - Lack of significant dermal penetration of titanium dioxide from sunscreen formulations containing nano- and submicron-size TiO2 particles. Toxicol Sci, 2010 ; 115 (1) : 156-166.
Wang Y, Chen Z, Ba T, Pu J et al. - Susceptibility of young and adult rats to the oral toxicity of titanium dioxide nanoparticles. Small 2013 ; 9(9-10) : 1742-1752.
EFSA. Safety assessment of titanium dioxide (E171) as a food additive. EFSA. Panel on Food Additives and Flavourings, adopted 25 March 2021, 130pp. doi: 10.2903/j.efsa.2021.6585.
Christensen FM, Johnston HJ, Stone V, Aitken RJ et al. - Nano-TiO2. Feasibility and challenges for human health risk assessment based on open literature. Nanotoxicology, 2011 ; 5 (2) : 110-124.
Wang J, Zhou G, Chen C, Yu H et al. - Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett, 2007 ; 168 : 176-185.
Kreyling WG, Holzwarth U, Schleh C, Kozempel J et al. - Quantitative biokinetics of titanium dioxide nanoparticles after oral application in rats: Part 2. Nanotoxicology 2017b ; 11 : 443–453.
Tassinari R, Cubadda F, Moracci G, Aureli F et al. - Oral, short-term exposure to titanium dioxide nanoparticles in Spragues-Dawley rat: focus on reproductive and endocrine systems and spleen. Nanotoxicology 2014 ; 8 : 654–662.
Oberdorster G, Ferin J et Lehnert BE - Correlation between particle size, in vivo particle persistence and lung injury. Environ Health Perspect, 1994 ; 102 (5) : 173-179.
Johnston HJ, Hutchison GR, Christensen FM, Peters S et al. - Identification of the mechanisms that drive the toxicity of TiO2 particulates : the contribution of physicochemical characteristics. Part Fibre Toxicol, 2009 ; 6 : 33-60.
Ferin J, Oberdorster G et Penney DP - Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Molec Biol. 1992 ; 6 (5) : 535-542.
Sager TM, Kommineni C et Castranova V - Pulmonary response to intratracheal instillation of ultrafine versus fine titanium dioxide : role of particle surface area. Part Fibre Toxicol, 2008 ; 5 : 17.
Hougaard KS, Jackson P, Jensen KA, Sloth JJ et al. - Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan). A study in mice. Part Fibre Toxicol, 2010 ; 7 : 16.
Wang J, Chen C, Liu Y, Jiao F et al. - Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicol Lett. 2008a ; 183 : 72-80.
Wang J, Liu Y, Jiao F, Lao F et al. - Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicol. 2008b ; 254 : 82-90.
Fabian E, Landsiedel R, Ma-Hock L, Wiench K et al. - Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Arch Toxico,. 2008 ; 82 : 151-157.
Xie G, Wang C, Sun J et Zhong G - Tissue distribution and excretion of intravenously administered titanium dioxide nanoparticles. Toxicol Letters, 2011 ; 205 : 55-61.
Umbreit TH, Francke-Carroll S, Weaver JL, Miller TJ et al. - Tissue distribution and histopathological effects of titanium dioxide nanoparticles after intravenous or subcutaneous injection in mice. J Appl Toxicol, 2012 ; 32 : 350-357.
Kreyling WG, Holzwarth U, Haberl N, Kozempel J et al. - Quantitative biokinetics of titanium dioxide nanoparticles after intravenous injection in rats: Part 1. Nanotoxicology 2017a ; 11 : 434–442.
Pujalte I, Dieme D, Haddad S, Serventi AM et al. - Toxicokinetics of titanium dioxide (TiO2) nanoparticles after inhalation in rats. Toxicol Lett. 2017 ; 265 : 77-85.
Hext PM, Tomenson JA, Thompson P. - Titanium dioxide: inhalation toxicology and epidemiology. Ann Occup Hyg. 2005 ; 49(6) : 461-472.
Bermudez E, Mangum JB, Asguarian B, Wong BA et al. - Long term pulmonary responses of three laboratory rodent species to subchronic inhalation of pigmentary titanium dioxide particles. Toxicol Sci, 2002 ; 70 : 86-97.
Geraets L, Oomen AG, Krystek P, Jacobsen NR et al. - Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Part Fibre Toxicol. 2014 ; 11:30.
Braakhuis HM , Gosens I, Heringa MB, Oomen AG et al. - Mechanism of action of TiO2: Recommendations to reduce uncertainties related to carcinogenic potential. Annu Rev Pharmacol Toxicol. 2021 ; 61 : 203-223.
Barreto da Silva A, Miniter M, Thom W, Hewitt RE et al. - Gastrointestinal absorption and toxicity of nanoparticles and microparticles: myth, reality and pitfalls explored through titanium dioxide. Curr Opin Toxicol. 2020 ; 19 : 112-120.
Hubbard AK, Timblin CR, Shukla A, Rincón M et al. - Activation of NF-KB dependent gene expression by silica in lungs of luciferase reporter mice. Am J Physiol Lung Cell Mol Physiol, 2002 ; 282 : L968-L975.
Chen HW, Su SF, Chien CT, Lin WH et al. - Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. FASEB J, 2006 ; 20 (13) : 2393-2395.
Inoue K, Takano H, Ohnuki M, Yanagisawa R et al. - Size effects of nanomaterials on lung inflammation and coagulatory disturbance. Int J Immunopathol Pharmacol, 2008 ; 21 (1) : 197-206.
Grassian VH, Adamcakova-Dodd A, Pettibone JM, O'Shaughnessy PT et al. - Inflammatory response of mice to manufactured titanium dioxide nanoparticles : comparison of size effects through different exposure routes. Nanotoxicology, 2007 ; 1 (3) : 211-226.
Warheit DB, Brock WJ, Lee KP, Webb TR et al. - Comparative pulmonary toxicity inhalation and instillation studies with different TiO2 particle formulations : impact of surface treatment on particle toxicity. Toxicol Sci, 2005 ; 88 : 514-524.
Kobayashi N, Naya M, Endoh S, Maru J, Yamamoto K et Nakanishi J - Comparative pulmonary toxicity study of nano-TiO2 particles of different sizes and agglomerations in rats : different short- and long-term postinstillation results. Toxicol, 2009 : 246(1-2) : 110-117.
Naya M, Kobayashi N, Ema M, Kasamoto S et al. - In vivo genotoxicity study of titanium dioxide nanoparticles using comet assay following intratracheal instillation in rats. Regul Toxicol Pharmacol, 2012 ; 62 : 1-6.
Warheit DB, Webb TR, Reed KL, Frerichs S et al. - Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles. Differential responses related to surface properties. Toxicology, 2007 ; 230 (1) : 90¬104.
Renwick LC, Brown D, Clouter A et Donaldson K - Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occupat Environ Med. 2004 ; 61 (5) : 442-447
Ahn MH, Kang CM, Park CS, Park SJ et al. - Titanium dioxide particle-induced goblet cell hyperplasia : association with mast cells and IL-13. Respir Res, 2005 ; 6 : 34-43.
Ma-Hock L, Burkhardt S, Strauss V, Gamer AO et al. - Development of a short-term inhalation test in the rat using nano-titanium dioxide as a model substance. Inhal Toxicol. 2009; 21 (2) : 102-18.
Landsiedel R, Ma-Hock L, Hofmann T, Wiemann M et al. - Application of short-term inhalation studies to assess the inhalation toxicity of nanomaterials. Part Fibre Toxicol 2014 ; 11:16.
OECD. 2018b. Guidance document on inhalation toxicity studies. In Series on Testing and Assessment n° 39, Second edition. ENV/JM/MONO(2009)28/REV1.
Yu KN, Sung JH, Lee S, Kim JE et al. - Inhalation of titanium dioxide induces endoplasmic reticulum stress-mediated autophagy and inflammation in mice. Food Chem Toxicol. 2015 ; 85 : 106-113.
Brand W, Peters RJB, Braakhuis HM, Maślankiewicz L et al. - Possible effects of titanium dioxide particles on human liver, intestinal tissue, spleen and kidney after oral exposure. Nanotoxicology. 2020 ; 14(7) : 985-1007.
Park YH, Jeong SH, Yi SM, Choi BH et al. - Analysis for the potential of polystyrene and TiO2 nanoparticles to induce skin irritation, phototoxicity and sensitization. Toxicol in Vitro, 2011 ; 25 : 1863-1869.
Iavicoli I, Leso V, Fontana L et Bergamaschi A - Toxicological effects of titanium dioxide nanoparticles : a review of in vitro mammalian studies. Eur Rev Med Pharmacol Sci, 2011 ; 15(5) : 481-508.
Carriere M, Arnal ME, Douki T - TiO2 genotoxicity: An update of the results published over the last six years. Mutat Res. 2020 ; 854-855 : 503198.
Lee KP, Trochimowicz HJ et Reinhardt CF - Transmigration of titanium dioxide (TiO2) particles in rats after inhalation exposure. Exp Mol Pathol. 1985 ; 42 : 331-343.
Lee KP, Henry NW Ill, Trochimowicz HJ et Reinhardt CF - Pulmonary response to impaired lung clearance in rats following excessive TiO2 dust deposition. Environ Res. 1986 ; 41 : 144-167.
Heinrich U, Fuhst R et Rittinghausen S - Chronic inhalation exposure of Wistar rats and two different strains of mice to diesel exhaust, carbon black and titanium dioxide. Inhal Toxicol, 1995 ; 7 : 533-556.
Takeda K, Suzuki K, Ishihara A, Kubo-lrie M et al.- Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. J Health Sci, 2009 ; 55(1) : 95-102.
Stapleton PA, Minarchick VC, Yi J, Engels K et al. - Maternal engineered nanomaterial exposure and fetal microvascular function: does the Barker hypothesis apply? Am J Obstet Gynecol. 2013 ; 209 (3) : 227.e1-11.
Stapleton PA, Nichols CE, Yi J, McBride CR et al. - Microvascular and mitochondrial dysfunction in the female F1 generation after gestational TiO2 nanoparticle exposure. Nanotoxicology 2015 ; 9 (8) : 941-951.
Stapleton PA, Hathaway QA, Nichols CE, Abukabda AB et al. - Maternal engineered nanomaterial inhalation during gestation alters the fetal transcriptome. Part Fibre Toxicol. 2018 ; 15 (1) : 3.
Engler-Chiurazzi EB, Stapleton PA, Stalnaker JJ, Ren X et al. - Impacts of prenatal nanomaterial exposure on male adult Sprague-Dawley rat behavior and cognition. J Toxicol Environ Health 2016 Part A ; 79 (11) : 447-452.
Ellis ED, Watkins JP, Tankersley WG, Phillips JA, Girardi DJ. - Occupational exposure and mortality among workers at three titanium dioxide plants. Am J Ind Med. 2013 ; 56(3) : 282-291.
Boffetta P, Soutar A, Cherrie JW, Granath F et al. - Mortality among workers employed in the titanium dioxide production industry in Europe. Cancer Causes Control. 2004 ; 15(7) : 697-706.
Chen JL, Fayerweather WE - Epidemiologic study of workers exposed to titanium dioxide. J Occup Med. 1988 ; 30(12) : 937-942.
Guseva Canu I, Fraize-Frontier S, Michel C, Charles S. - Weight of epidemiological evidence for titanium dioxide risk assessment: current state and further needs. J Expo Sci Environ Epidemiol. 2020a ; 30(3) : 430-435.
Guseva Canu I, Gaillen-Guedy A, Wild P, Straif K et al. - Lung cancer mortality in the French cohort of titanium dioxide workers: some aetiological insights. Occup Environ Med. 2020b ; 77(11) : 795-797.
Bischoff NS, de Kok TM, Sijm DTHM, van Breda SG et al. - Possible adverse effects of food additive E171 (Titanium dioxide) related to particle specific human toxicity, including the immune system. Int J Mol Sci. 2021 ; 22(1) : 207.
Guide pour la mise au point des méthodes de prélèvement et d’analyse des polluants inorganiques dans l’air des lieux de travail – Annexe 1 : Synthèse des limites de quantification pour différents supports de collecte Analyse par ICP-OES de 26 éléments (métaux et métalloïdes). In : MétroPol. Métrologie de polluants. INRS (https://www.inrs.fr/publications/bdd/metropol.html).
Méthodes NIOSH : 7300 (2003), 7302 (2014), 7304 (2014) et 7306 (2015). In : NIOSH Manual of Analytical Methods (NMAM) 5th Edition, 2018 (https://www.cdc.gov/niosh/nmam/).
Air des lieux de travail. Détermination des métaux et métalloïdes dans les particules en suspension dans l’air par spectrométrie d’émission atomique avec plasma à couplage inductif. Partie 1 : Prélèvement d'échantillons. Norme NF ISO 15202-1 (Indice de classement NF X43-265-1). La Plaine Saint Denis : AFNOR ; Septembre 2020 – 28p.
Air des lieux de travail. Détermination des métaux et métalloïdes dans les particules en suspension dans l’air par spectrométrie d’émission atomique avec plasma à couplage inductif. Partie 2 : Préparation des échantillons. Norme NF ISO 15202-2 (Indice de classement NF X43-265-2). La Plaine Saint Denis : AFNOR ; Octobre 2020 – 65p.
Air des lieux de travail. Détermination des métaux et métalloïdes dans les particules en suspension dans l’air par spectrométrie d’émission atomique avec plasma à couplage inductif. Partie 3 : Analyse. Norme NF ISO 15202-3 (Indice de classement NF X43-265-3). La Plaine Saint Denis : AFNOR ; Décembre 2005 – 48p.
Air des lieux de travail. Détermination des métaux et métalloïdes dans les particules en suspension dans l'air par spectrométrie de masse avec plasma à couplage inductif. Norme NF ISO 30011 (Indice de classement : X 43-207). La Plaine Saint Denis : AFNOR ; Décembre 2010 – 37p.
Méthodes de mesure du dioxyde de titane sous forme nanométrique. Avis de l’Anses, rapport d’expertise collective. Saisine n° 2021-MPEX-0047.
Binet S, Ricaud M, Chazelet S, Fontaine JR et al. Dioxyde de titane nanométrique : de la nécessité de proposer une valeur limite d’exposition professionnelle. Note Scientifique et Technique de l’INRS, NS 349, Mars 2017, 17 p.
Chazelet S,Fontaine JR,Binet S, Gate et al. Dioxyde de titane nanométrique : de la nécessité d'une valeur limite d'exposition professionnelle.Hygiène et sécurité du travail n°242. NT36, mars 2016 (https://www.inrs.fr/media.html?refINRS=NT%2036).
Witschger O, Le Bihan O, Reynier M, Durand C et al. Préconisations en matière de caractérisation des potentiels d’émission et d’exposition professionnelle aux aérosols lors d’opérations mettant en œuvre des nanomatériaux. Note documentaire ND 2355. Hyg. Sécur Trav. 2012 ; 226 : 41-55.
Cuves et réservoirs. Cuves et réservoirs. Interventions à l'extérieur ou à l'intérieur des équipements fixes utilisés pour contenir ou véhiculer des produits gazeux, liquides ou solides. Recommandation CNAMTS R 435. Assurance Maladie, 2008 (https://www.ameli.fr/paris/entreprise/tableau_recommandations).
Hartwig A et Commission MAK - Titanium dioxide, respirable fraction. The MAK Collection for Occupational Health and Safety, 2019 ; 4 : 857-869.
Valeur toxicologique de référence – Le dioxyde de titane sous forme nanoparticulaire – Avis de l’Anses, rapport d’expertise collective n° 2017-SA-0162, 2019 (https://www.anses.fr/fr).
Valeurs limites d’exposition en milieu professionnel – Méthodes de mesure du dioxyde de titane sous forme nanométrique – Avis de l’Anses, rapport d’expertise collective n° 2021-MPEX-0047, 2024 (https://www.anses.fr/fr).