Accès rapides :

Vous êtes ici :

  1. Accueil
  2. Publications et outils
  3. Bases de données
  4. Fiches toxicologiques
  5. Microfibres de verre (FT 268) (rubrique sélectionnée)

Microfibres de verre

Fiche toxicologique n° 268

Sommaire de la fiche

Édition : Décembre 2021

Bibliographie

  1. IARC. Man-made vitreous fibres. IARC monographs on the evaluation of the carcinogenic risks to humans. Vol 81, 2002. IARC, Lyon, France
  2. AFSSET. Les fibres minérales artificielles siliceuses – fibres céramiques réfractaires, fibres de verre à usage spécial, évaluation de l'exposition de la population générale et des travailleurs, avril 2007, 288 p.
  3. Charte fibres de verre à usage spécial, 2006
  4. INSERM. Effets sur la santé des fibres de substitution à l’amiante. Expertise collective INSERM, Paris, 1999
  5. Protherm AG. Fibre de verre résistante jusqu’à 500°C.
  6. Richard J. Lewis Sr. Hawley’s condensed chemical dictionary. Fourteenth edition. New York, 2001: 535.
  7. Bingham E., Cohrssen B., Powell C.H. Patty’s toxicology. Fifth edition. 2001, John Wiley and Sons, Inc, volume 1: 575-582.
  8. Comptage des fibres. Méthode M-309. In: MétroPol. INRS, 2016 (https://www.inrs.fr/publications/bdd/metropol.html).
  9. Qualité de l'air — Air des lieux de travail — Prélèvement sur filtre à membrane pour la détermination de la concentration en nombre de fibres par les techniques de microscopie : MOCP, MEBA et META — Comptage par MOCP. Norme NF X43-269. AFNOR ; décembre 2017.
  10. Asbestos and other fibers by PCM 7400. Method 7400. In NIOSH Manual of Analytical Methods (NMAM), Fifth Edition. NMAM, April 2019 (www.cdc.gov/niosh/nmam).
  11. OMS. Détermination de la concentration des fibres en suspension dans l'air. Méthode recommandée : la microscopie optique en contraste de phase (comptage sur membrane filtrante). Genève : Organisation mondiale de la Santé ; 1998.
  12. Air Ambiant - Détermination de la concentration en nombre des particules inorganiques fibreuses. Méthode par microscopie électronique à balayage. Norme ISO 14966. AFNOR ; décembre 2019.
  13. Nielsen GD, Koponen IK. Insulation fiber deposition in the airways of men and rats. A review of experimental and computational studies. Regul Toxicol Pharmacol. 2018 Apr;94:252-270. doi: 10.1016/j.yrtph.2018.01.021. Epub 2018 Feb 11.
  14. Griffis LC et al. – Deposition of crocodolite asbestos and glass microfibers inhaled by Beagle dog. Am Ind Assoc J. 1983 ; 44 (3) : 216-222.
  15. Hesterberg TW, Anderson R, Bernstein DM, Bunn WB, Chase GA, Jankousky AL, Marsh GM, McClellan RO. Product stewardship and science: safe manufacture and use of fiber glass. Regul Toxicol Pharmacol. 2012, 62(2):257-77.
  16. Zeidler-Erdely PC, Calhoun WJ, Ameredes BT, Clark MP, Deye GJ, Baron P, Jones W, Blake T, Castranova V. In vitro cytotoxicity of Manville Code 100 glass fibers: effect of fiber length on human alveolar macrophages. Part Fibre Toxicol. 2006, 28;3:5.
  17. Hesterberg TW, Chase G, Axten C, Miller WC, Musselman RP, Kamstrup O, Hadley J, Morscheidt C, Bernstein DM, Thevenaz P. Biopersistence of synthetic vitreous fibers and amosite asbestos in the rat lung following inhalation. Toxicol Appl Pharmacol. 1998, 151(2): 262-275.
  18. Searl A et al. – Biopersistence and durability of nine mineral fibre types in rat lungs over 12 months. Ann Occup Hyg. 1999 ; 43 (3) : 143-53.
  19. Cullen RT et al. – Pathogenicity of a special-purpose glass microfiber (E glass) relative to another glass microfiber and amosite asbestos. Inhal Toxicol. 2000 ; 12 (10) : 959-77.
  20. Cullen RT, Miller BG, Davis JM, Brown DM, Donaldson K. Short-term inhalation and in vitro tests as predictors of fiber pathogenicity. Environ Health Perspect 1997, 105 (suppl 5): 1235-1240.
  21. Bellmann B, Muhle H, Creutzenberg O, Ernst H, Müller M, Bernstein DM, Riego Sintes JM. Calibration study on subchronic inhalation toxicity of man-made vitreous fibers in rats. Inhal Toxicol. 2003, 15(12):1147-1177.
  22. ECHA RAC (Committee for Risk Assessment) Annex 1: Background document to the Opinion proposing harmonised classification and labelling at Community level of E-glass microfibres of representative composition. CLH-O-0000001412-86-34/F, adopted 04 December 2014, 46 pp. https://echa.europa.eu/registry-of-clh-intentions-until-outcome/-/dislist/details/0b0236e180678d0a
  23. Jaurand MC – Mechanisms of fiber-induced genotoxicity. Environ Health Perspect. 1997 ; 105 (suppl 5) : 1073-84.
  24. Wang Q et al. – Biological effects of man-made mineral fibers (II) – Their genetic damages examined by in vitro assay. Indus Health. 1999 ; 37 : 342-347.
  25. Padmore T, Stark C, Turkevich LA, Champion JA. Quantitative analysis of the role of fiber length on phagocytosis and inflammatory response by alveolar macrophages. Biochim Biophys Acta. 2017 ; 1861(2): 58–67.
  26. NTP Report on carcinogens: background document for Glass Wool Fibers. U.S. Department of Health and Human Services, september 2009, 308pp.
  27. Ong T et al. – Induction of micronucleated and multinucleated cells by man-made fibers in vitro in mammalian cells. J Toxicol Environ Health. 1997 Mar ; 50 (4) : 409-14.
  28. Gao HG et al. – Morphological transformation induced by glass fibers in BALB-c-3T3 cells. Teratog Carcinog Mutagen. 1995 ; 15 (2): 63-71.
  29. Johnson NF, Jaramillo RJ. p53, Cip1, and Gadd153 expression following treatment of A549 cells with natural and man-made vitreous fibers. Environ Health Perspect. 1997;105 Suppl 5:1143-1145.
  30. Donaldson K, Brown DM, Miller BG, Brody AR. Bromo-deoxyuridine (BrdU) uptake in the lungs of rats inhaling amosite asbestos or vitreous fibres at equal airborne fibre concentrations. Exp. Toxicol. Pathol. 1995, 47, 207–211.
  31. Hesterberg TW, Barrett JC. Dependence of asbestos- and mineral dust-induced transformation of mammalian cells in culture on fiber dimension. Cancer Res. 1984, 44: 2170–2180.
  32. Bernstein DM. Special-purpose fiber type 475 - Toxicological assessment. Inhalation Toxicology 2007, 19:149–159.
  33. Sripaiboonkij P, Sripaiboonkij N, Phanprasit W, Jaakkola MS - Respiratory and skin health among glass microfiber production workers: a cross-sectional study. Environ Health. 2009;8:36.
  34. Marchand JL, Luce D, Leclerc A, Goldberg P, Orlowski E, Bugel I, Brugère J - Laryngeal and hypopharyngeal cancer and occupational exposure to asbestos and man-made vitreous fibers: results of a case-control study. Am J Ind Med. 2000 ;37(6):581-9.
  35. Marsh GM, Youk AO, Stone RA, Buchanich JM, Gula MJ, Smith TJ, Quinn MM - Historical cohort study of US man-made vitreous fiber production workers: I. 1992 fiberglass cohort follow-up: initial findings. J Occup Environ Med. 2001;43(9):741-56.
  36. Dement J. M. Environmental aspects of fibrous glass production and utilization. Environ. Res., 1975,9, 295-312.United Kingdom Factories Inspectorate. Survey of Superfine Man-Made Mineral Fibre
  37. Exposure in the UK, London, Health and Safety Executive Advisory Committee on Toxic Substances, Occupational Medicine and Hygiene Laboratories, 1987.
  38. Krantz S. Exposure to Man-Made Mineral fibers at ten production plants in Sweden. Scand. J. Work Environ. Health, 1988, 14 (suppl. 1), 49-51
  39. Marchant G.E. et coll. A synthetic vitreous fibre (SVF) occupational exposure database : implementing the SVF health and safety partnership program. Appl. Occup. Environ. Hyg., 2002, 17, 276-285.
  40. Esmen N.A. et coll. Exposure of employees to man-made vitreous fibers : installation of insulation materials. Environ. Res., 1982, 28, 386-398.
EN SAVOIR PLUS SUR LES FICHES TOXICOLOGIQUES