

Données de validation

Numéro de fiche	Titre
METROPOL_60	Oxyde d'éthylène M-60

Données de validation principales

Généralités

Substance	Oxyde d'éthylène
Existe-t-il une VLEP ?	oui
VLEP 8h	1,8 mg/m³
Existe-t-il une VLEP-CT ?	oui
VLEP-CT	9 mg/m³
Choix du domaine de validation :	

Méthode validée de 0.01 mg/m3 à 50 mg/m3

Dispositif de prélèvement :

Conditions analytiques

1 injecteur:

SPLIT/SPLITLESS

Température d'utilisation	250 °C
Volume injecté	2 μL
Programme de température	non

1 colonne:

Colonne	■ POLAIRE	
Nature phase	Poly Ethylène Glycol	
Longueur	50 m	
Diamètre	0,25 mm	
Epaisseur de film	0,2 μm	
Température d'utilisation		120 °C
Programme de température		non

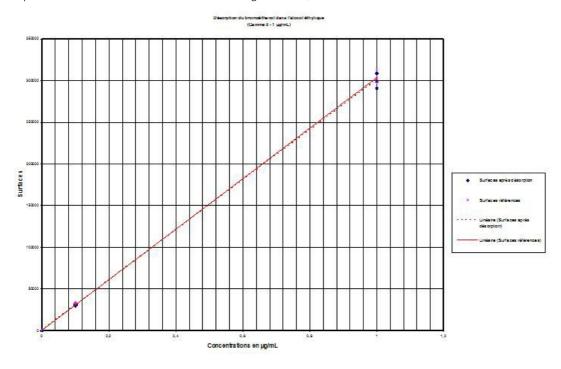
1 détecteur :

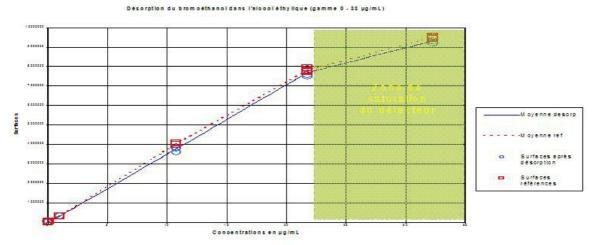
CAPTURE ELECTRONIQUE

Température ______ 280 °C

Validation Méthode Analytique

Limite détection (LD) :


0,01 µg/mL

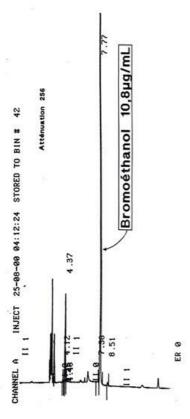

Limite de quantification (LQa) :

0,04 µg/mL

Réponse analytique - linéarité :

La réponse du détecteur est linéaire dans l'intervalle 0-25 mg/mL.Au delà, une saturation du détecteur est observée.

Taux de récupération


	essai 1	essai 2	essai 3	essai 4	essai 5
Quantité collectée (mg)	0,001	0,01	0,108	0,215	0,323
Conc air correspondante (mg/m³)	0,01	0,1	1,08	2,15	3,23
Kd	96,5	94,5	93,5	98,5	98,5

Informations complémentaires

Exemple de chromatogramme

- Colonne capillaire CP-Wax 57 CB, 50 m (diamètre interne 0,25 mm-film 0,2 μm).
- Débit du gaz vecteur : 2 mL/min.
- Températures : injecteur : 250°C, détecteur : 280°C, colonne : 120°C.
- Débit de fuite : 20 mL/min.
- Volume injecté : 2 μL.
- Débit d'alimentation du détecteur : Azote 10 mL/min.

Dans les conditions définies ci-dessus, la limiote de détection est évaluée à 0,01 µg/mL et la limite de quantification à 0,04 µg/mL

Solutions écartées

choix du solvant de désorption

Les conclusions des essais comparatifs effectués en laboratoire sont les suivantes :

Le rendement de désorption dans le méthanol est seulement de 60 % sur une gamme 0,1 à 10 μg/mL (concentrations des solutions de désorption injectées en chromatographie en phase gazeuse), et plafonne à 76 % pour une concentration de 32 μg/mL.

De plus, le méthanol ne semble pas convenir pour la conservation du bromoéthanol (diminutions importantes des surfaces des pics chromatographiques obtenus lorsque les solutions sont conservées

24 heures et 48 heures).

Le mélange binaire toluène/acétonitrile donne d'excellents rendements de désorption (88 à 100 %) et le bromoéthanol y est stable. Pour autant, ce n'est pas le solvant idéal car l'étude des chromatogrammes montre qu'il désorbe une multitude d'impuretés présentes dans les tubes vierges, ce que ne fait pas le méthanol. L'une de ces impuretés (probablement halogénée) interfère avec le bromoéthanol et empêche des mesures de concentrations inférieures à 1 μg/mL.

MétroPol

Le butanol donne un rendement de désorption de 83 %, le propanol de 90 %. L'éthanol donne le meilleur rendement de désorption (98 %). Par ailleurs, les surfaces obtenues sont analogues à celle du mélange binaire. Enfin, le chromatogramme est parfaitement propre