Participation design of the final product or production by exploiting multi-site and -user virtual environments

INRS 2017

Kaj Helin, Jaakko Karjalainen

VTT Technical Research Centre of Finland Ltd
Content of the presentation

- Overview of VTT
- VTT’s Virtual/Mixed/Augmented Reality laboratory
- Background
- Objective
- Developed proof-of-concept
- Design Methods
- Use cases
- Results
- Conclusion
VTT – Technology for business

VTT Technical Research Centre of Finland Ltd is the leading research and technology company in the Nordic countries. We provide expert services for our domestic and international customers and partners, and for both private and public sectors. We use 4,000,000 hours of brainpower a year to develop new technological solutions.

We develop new smart technologies, profitable solutions and innovative services. We cooperate with our customers to produce technology for business and build success and well-being for the benefit of society.

VTT is a non-profit organisation and a crucial part of Finland's innovation eco-system. VTT operates under the mandate of the Ministry of Employment and the Economy.

- Turnover 277 M€ (VTT Group 2014), personnel 2,600 (VTT Group 1.1.2015)
- Unique research and testing infrastructure
- Wide national and international cooperation network

25 years history of VR and 10 years of AR
More than 100 cases with end-users
What we are doing?

Developing customers Human-Machine Systems and Augmented Human by utilising Virtual/Mixed/Augmented Environments
Virtual/Mixed/Augmented Reality laboratory

Powerwall: 3 x Barco BLM-W12 active stereo projectors (+floor if needed)

VR / Visualization: Unity 3D + MiddleVR (Virtools 5.0)

Tracking / Motion Capture: Vicon T20 (10 cameras)
(Vicon Pegasus => Jack)

AR / Head Mounted Display: HoloLens, Oculus Rift, Epson Moverio BT-200, Vuzix M100...

Controls: several game controllers & real controls system of machine e.g. crane

Motion Platform: MeVEA 3DOF (Max 500kg)

5.1 surround sound

Visualization with several PCs
Current Research Projects

- ESA - Augmented Reality for AIT, AIV and Orbit Operations (Coordinator)
- EU - Use-It-Wisely - Innovative continuous upgrades of high investment product-services (IP-Coodinator)
- EU-WEKIT - Wearable Experience for Knowledge Intensive Training
- Fimecc - MANU – LeanMes - Digitalize your factory floor
- VR-cameras – Augmented cameras for vehicles control
- Rolls Royce - From future concept of information visualization on tug boat
- Kemppi – Future user interface for welding
References
Participation design of the final product or production by exploiting multi-site and -user virtual environments

INRS 2017

Kaj Helin, Jaakko Karjalainen
VTT Technical Research Centre of Finland Ltd
Content of the presentation

- Overview of VTT
- VTT's Virtual/Mixed/Augmented Reality laboratory
- Background
- Objective
- Developed proof-of-concept
- Design Methods
- Use cases
- Results
- Conclusion
Background

- Designers’ don’t often have the real experience how the final product is really used to achieve work task’s goals
- High investment product producers are using VR for product review, but most of the stake holders, specially customers are around the world.
- Also personal smartphones, tablet and even VR system are getting common in customer market
Objective

- Develop proof-of-concept of Multi-site and –user VE
- Improve stakeholders’ experience of final product
- Test/evaluate design methods with Multi-site and –user VE
- Collect feedback from end-user companies
Proof-of-concept of Multi-site and -user VE

Remote design review
Individual participants
Several locations

- Smartphone HMD
e.g. Google cardboard, Samsung Gear

- Tablet / smartphone
e.g. iPad, android phone

- VR-devices
e.g. Oculus Rift

On-site design review
One locations
Several participants

Design review in VR - laboratory
e.g. VTT Tampere
Exploited Design methods

- Human Centered Design (HCD) approach
- Participatory Design
- Focus group
Use case

Car maintenance – Public
- Used set-up
 - Power wall with active stereo and tracking
 - HMD with tracking
 - Tablet and smart phone

Forest tractor assembly sequence design – Confidential
- Used set-up
 - Power wall with active stereo and tracking
 - HMD with tracking
 - Tablet
Remote design review
Individual participants
Several locations

Smartphone HMD
e.g. Google cardboard, Samsung Gear

Tablet / smartphone
e.g. iPad, android phone

VR-devices
e.g. Oculus Rift

Web server - MySQL

On-site design review
One locations
Several participant

Design review in VR - laboratory
e.g. VTT Tampere
Results

- System was demonstrated to six companies in field of machine- and shipbuilding, space and military
- More than 50 persons were participating to design review or demonstration
- Multi-site and –user VE is good environment for keeping the focus group meetings by exploiting participatory design
 - but having discussions is sometimes hard via Skype
- Important to have end-user (assembly worker, driver, …) to perform the task better and proper way
Conclusions

- VE technology maturity is already in good level for the design purposes and it is already daily base use in companies. The Multi-site and –user VE still need to improve to have better communication between stakeholder’ even its already improves communication in significantly.
- For better immersion and interaction in Multi-site and –user VE the sound feedback from system should be more realistic for the better experience.
- It is also important to remember that the use of HCD and Multi-site and –user VE in design process is iterative process and it means that sometimes many focus group meetings are required.
- Although some improvement are needed, case studies results support the use of Multi-site and –user VE for improving stakeholders’ ability to experience the real use better already in early design phase especially
Questions?

Kaj Helin
Kaj.helin@vtt.fi
Principal Scientist, Certified Project Manager IPMA
Human factors, Virtual and Augmented reality
VTT Technical Research Centre of Finland Ltd